Search powered by AI
Healthy Women Image

HealthyWomen Editors

The editorial team and staff of HealthyWomen.

Full Bio
Woman sneezing in the blossoming garden
iStock.com/bluecinema

Pollen Season Is Getting Longer and More Intense With Climate Change – Here’s What Allergy Sufferers Can Expect in the Future

Study finds that the U.S. could face up to a 200% increase in total pollen this century

Conditions & Treatments

the conversation logo

By Yingxiao Zhang, University of Michigan and Allison L. Steiner, University of Michigan

Brace yourselves, allergy sufferers – new research shows pollen season is going to get a lot longer and more intense with climate change.

Our latest study finds that the U.S. will face up to a 200% increase in total pollen this century if the world continues producing carbon dioxide emissions from vehicles, power plants and other sources at a high rate. Pollen season in general will start up to 40 days earlier in the spring and last up to 19 days longer than today under that scenario.

As atmospheric scientists, we study how the atmosphere and climate affect trees and plants. While most studies focus on pollen overall, we zoomed in on more than a dozen different types of grasses and trees and how their pollen will affect regions across the U.S. in different ways. For example, species like oak and cypress will give the Northeast the biggest increase, but allergens will be on the rise just about everywhere, with consequences for human health and the economy.

If your head is pounding at just the thought of it, we also have some good news, at least for knowing in advance when pollen waves are coming. We’re working on using the model from this study to develop more accurate local pollen forecasts.

Why pollen is increasing

Let’s start with the basics. Pollen – the dust-like grains produced by grasses and plants – contains the male genetic material for a plant’s reproduction.

How much pollen is produced depends on how the plant grows. Rising global temperatures will boost plant growth in many areas, and that, in turn, will affect pollen production. But temperature is only part of the equation. We found that the bigger driver of the future pollen increase will be rising carbon dioxide emissions.

The higher temperature will extend the growing season, giving plants more time to emit pollen and reproduce. Carbon dioxide, meanwhile, fuels photosynthesis, so plants may grow larger and produce more pollen. We found that carbon dioxide levels may have a much larger impact on pollen increases than temperature in the future.

Dust-like pollen falls from pine cones

Cones on a Norway Spruce in Virginia release pollen.
Famartin/Wikimedia,
CC BY-ND

Pollen changes will vary by region

We looked at 15 different pollen types, rather than treating all pollen the same as many past studies have.

Typically, pollination starts with leafy deciduous trees in late winter and spring. Alder, birch and oak are the three top deciduous trees for causing allergies, though there are others, like mulberry. Then grasses come out in the summer, followed by ragweed in late summer. In the Southeast, evergreen trees like mountain cedar and juniper (in the cypress family) start in January. In Texas, “cedar fever” is the equivalent of hay fever.

We found that in the Northeast, pollen seasons for a lot of allergenic trees will increasingly overlap as temperatures and carbon dioxide emissions rise. For example, it used to be that oak trees would release pollen first, and then birch would pollinate. Now we see more overlap of their pollen seasons.

How pollen season spreads across the U.S. over one year. Yingxiao Zhang and Allison Steiner.

In general, pollen season will change more in the north than in the south, because of larger temperature increases in northern areas.

Southeastern regions, including Florida, Georgia and South Carolina, can expect large grass and weed pollen increases in the future. The Pacific Northwest is likely to see peak pollen season a month earlier because of the early pollen season of alder.

Silver lining: We can improve pollen forecasting

Most pollen forecasts right now provide a very broad estimate. Part of the problem is that there aren’t many observing stations for pollen counts. Most are run by allergy clinics, and there are less than 100 of these stations distributed across the country. Michigan, where we live, doesn’t have any.

It’s a very labor-intensive process to actually measure different types of pollen. As a result, current forecasts have a lot of uncertainties. These likely are based in part on what a station has observed in the past and the weather forecast.

A person's hands jostle a pine branch to collect pollen

Pollen sampling for regional forecasts can be labor-intensive.
HelenaAnna/Wikimedia, CC BY-ND

Our model, if integrated into a forecasting framework, could provide more targeted pollen forecasts across the country.

We can estimate where the trees are from satellite data and on-the-ground surveys. We also know how temperature influences when pollen comes out – what we call the phenology of the pollen. With that information, we can use meteorological factors like wind, relative humidity and precipitation to figure out how much pollen gets into the air, and atmospheric models can show how it moves and blows around, to create a real-time forecast.

All of that information allows us to look at where pollen might be in space and time, so people dealing with allergies will know what’s coming in their area.

We’re currently talking with a National Oceanic and Atmospheric Administration lab about ways to integrate that information into a tool for air quality forecasting.

There are still some unknowns when it comes to long-term pollen projections. For example, scientists don’t fully understand why plants produce more pollen in some years than others. There’s not a good way to include that in models. It’s also not fully clear how plants will respond if carbon dioxide levels go through the roof. Ragweed and residential trees are also hard to capture. There are very few ragweed surveys showing where these plants are growing in the U.S., but that can be improved.

Pollen levels are already on the rise

A study in 2021 found that the overall pollen season was already about 20 days longer in North America than it was in 1990 and pollen concentrations were up about 21%.

Increasing pollen levels in the future will have a much broader impact than a few sniffles and headaches. Seasonal allergies affect about 30% of the population, and they have economic impacts, from health costs to missed working days.

[Over 150,000 readers rely on The Conversation’s newsletters to understand the world.Sign up today.]The Conversation

Yingxiao Zhang, Ph.D. Student in Atmospheric Science, University of Michigan and Allison L. Steiner, Professor of Atmospheric Science, University of Michigan

This article is republished from The Conversation under a Creative Commons license. Read the original article.

You might be interested in
Trending Topics

Español

C. diff is the name of a common, easily transmittable infection caused by the bacterium Clostridioides difficile. The infection causes your colon (bowel) wall to become inflamed, resulting in severe, watery diarrhea. Left untreated, it can cause a serious complication called toxic megacolon.

C. diff affects about 250,000 people in the United States every year. Some people get it only once in their lifetime, but if you have a C. diff infection, there is up to a 1 in 4 chance you might relapse (the same infection returns) or get it again within eight weeks. People at the highest risk for a C. diff infection are those who take or have recently taken antibiotics, especially if they have a weak immune system.

The bacteria live in feces (poop), and in soil and water. They spread easily and can live for a long time on hard and soft surfaces, like linens and clothing. If someone who has C. diff on their hands touches a door handle and you touch it after, the bacteria transfer to your hand. They then can enter your gastrointestinal system if you touch your mouth or handle food before washing your hands.

Protect yourself and others from getting a C. diff infection in a healthcare setting

hand washing in a hospital

If you are a patient in a hospital, skilled nursing facility or rehabilitation center, you are at higher risk of getting a C. diff infection — not just because you likely have a weak immune system from the condition that put you in the facility but also because of the number of people you may encounter while you’re there.

Here are some steps you can take to lower the risk of getting C. diff in a healthcare facility:

  1. Make sure all healthcare workers and visitors wash their hands before they touch you and your things. If you don’t see them wash their hands, ask them to do so.
  2. Wash your hands well with soap and water every time you use the bathroom. If you use a bedside commode, ask to be transported to a sink to wash your hands or use a waterless hand sanitizer.
  3. Wash your hands before eating or drinking. If you can’t get to a sink, ask the staff or a friend to supply you with a waterless hand sanitizer to use while you are in bed or sitting in your chair.
  4. Allow cleaning staff access to your environment. Clear everything off the bedside table or nightstand, and remove clothing or linens from the bedside rails so they can be wiped down.

Patients with a diagnosed C. diff infection should not share a room with someone who does not have the infection. If you do share a room and your roommate contracts C. diff, ask to be moved.

Stop the spread of C. diff at home

household cleaning supplies

C. diff doesn’t just affect people in healthcare facilities. It can happen at home, too.

Here are steps you can take to reduce the risk of spreading C. diff at home:

  1. If your home has a second bathroom, reserve one for the person with the C. diff infection to limit exposure to others.
  2. If your home has only one bathroom, make sure the toilet seat, flusher, faucets, light switches and doorknob are cleaned with a bleach-based cleaner after each use.
  3. If the infected person is immobile, keep waterless hand sanitizer within reach.
  4. Clean common home surfaces (door knobs, light switches, fridge handles, etc.).
  5. Wash clothing (especially underwear), towels and linens separately and in the hottest water possible.
  6. Wear disposable gloves while handling clothing and linens, especially if the person is incontinent (loses control of their bowels). Wash your hands after removing the gloves.
  7. Shower with soap to remove C. diff that may be on the skin.

This educational resource was created with support from Seres Therapeutics and Nestle Health Science.